References

Boikova, A. I. \& Domansky, A. I. (1974). Cem. Concr. Res. 4, 773-784.
Brenner, P., Eysel, W. \& Hahn, Th. (I971). Neues Jahrb. Mineral. Monatsh. 4, 175-179.
Breuer, K. H. \& Eysel, W. (1983). Z. Kristallogr. 162, 289-297.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
Donnay, G. \& Allmann, R. (1970). Am. Mineral. 55, 1003-1015.
Eysel, W. \& Breuer, K. H. (1983). Z. Kristallogr. 163, 1-17.
Eysel, W. \& Hahn, Th. (1970). Z. Kristallogr. 131, 40-59.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
NiShi, F. \& Takéuchi, Y. (1981). Ann. Meet. Mineral. Soc. Japan, Abstract 62.
Nishi, F., Takéuchi, Y. \& Maki, I. (1982a). Ann. Meet. Mineral. Soc. Japan, Abstract 43.
Nishi, F., Takéuchi, Y. \& Maki, I. (1982b). Ann. Meet. Crystallogr. Soc. Japan, Abstract 89.
Nishi, F., Takéuchi, Y. \& Maki, I. (1983). Ann. Meet. Mineral. Soc. Japan, Abstract 37.
Tanaka, M., Sudoh, G. \& Akaiwa, S. (1968). Proc. 5th Int. Symp. Chemistry of Cement, Tokyo, pp. I22-135.

Acta Cryst. (1984). C40, 733-736

Location and Anisotropic Refinement of Deuterium Atoms in Deuterium Sodium Silicate-Deuterium Oxide (1/8) $\mathrm{Na}_{2} \mathrm{D}_{2} \mathrm{SiO}_{4} \cdot \mathbf{8 \mathrm { D } _ { 2 } \mathrm { O } \text { by Neutron Diffraction; Hydrogen }}$ Bonding at $\mathbf{1 7 3} \mathrm{K}$

By Rudolf L. Schmid and J. Felsche
Fakultät für Chemie, Universität Konstanz, Postfach 5560, D-7750 Konstanz, Federal Republic of Germany
and G. J. McIntyre
Institut Laue - Langevin, BP 156 X, 38042 Grenoble CEDEX, France

(Received 1 July 1983; accepted 5 December 1983)

Abstract

M_{r}=302 \cdot 1\), orthorhombic, $\quad I b c a, \quad a=$ 11.658 (5),$\quad b=16.927$ (4), $\quad c=11.477$ (3) $\AA, \quad V=$ $2264.79 \AA^{3}, Z=8, D_{m}=1.75(296 \mathrm{~K}), D_{x}=1.77$ $\mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda=1.2640 \AA, \quad \mu(n)=0.001 \mathrm{~mm}^{-1}, \quad F(000)$ $=160.96, T=173 \mathrm{~K}, R=0.037$ for 1015 independent reflections. All deuterium atoms have been located and the hydrogen-bond structure of $\mathrm{Na}_{2} \mathrm{D}_{2} \mathrm{SiO}_{4} \cdot 8 \mathrm{D}_{2} \mathrm{O}$ has been determined by single-crystal neutron diffraction. Coordinates and anisotropic temperature factors have been refined by full-matrix least squares for all atoms, deuterium atoms included. The crystal structure of $\mathrm{Na}_{2} \mathrm{D}_{2} \mathrm{SiO}_{4} .8 \mathrm{D}_{2} \mathrm{O}$ consists of isolated $\left[\left.\mathrm{D}_{2} \mathrm{SiO}_{4}\right|^{2-}\right.$ anions and linear chains of edge-linked $\left[\left.\mathrm{Na}\left(\mathrm{D}_{2} \mathrm{O}\right)_{6}\right|^{+}\right.$ cations running parallel to the a axis which are connected by hydrogen bonds. Coordination numbers observed are $\mathrm{CN}=6$ for Na with almost octahedral geometry and $\mathrm{CN}=4$ and 5 for the $\mathrm{D}_{2} \mathrm{O}-\mathrm{Na}, \mathrm{D}$ polyhedra.

Introduction. Two series of crystalline hydrate phases exist in the system $\mathrm{Na}_{2} \mathrm{O}-\mathrm{SiO}_{2}-\mathrm{H}_{2} \mathrm{O}: \mathrm{Na}_{3} \mathrm{HSiO}_{4} \cdot n \mathrm{H}_{2} \mathrm{O}$ ($n=5,2,1,0$) with an $\mathrm{Na}_{2} \mathrm{O}: \mathrm{SiO}_{2}$ ratio of $3: 2$; and $\mathrm{Na}_{2} \mathrm{H}_{2} \mathrm{SiO}_{4} \cdot n \mathrm{H}_{2} \mathrm{O} \quad(n=8,7,5,4)$ with an $\mathrm{Na}_{2} \mathrm{O}: \mathrm{SiO}_{2}$ ratio of $1: 1$. Members of the first series are built up of isolated $\left[\mathrm{HSiO}_{4}\right]^{3-}$ anions, as shown for $\mathrm{Na}_{3} \mathrm{HSiO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (Smolin, Shepelev \& Butikova, 1973) and $\mathrm{Na}_{3} \mathrm{HSiO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Schmid, Huttner \& Felsche,

1979; Schmid, Szolnay, Felsche \& Hutter, 1981), whereas the members of the second series are built up of isolated $\left[\mathrm{H}_{2} \mathrm{SiO}_{4}\right)^{2-}$ anions as shown for $\mathrm{Na}_{2}{ }^{-}$ $\mathrm{H}_{2} \mathrm{SiO}_{4} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ (Jamieson \& Dent-Glasser, 1966a,b), $\mathrm{Na}_{2} \mathrm{H}_{2} \mathrm{SiO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ (Dent-Glasser \& Jamieson, 1976), $\mathrm{Na}_{2} \mathrm{H}_{2} \mathrm{SiO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (Jamieson \& Dent-Glasser, 1967; Williams \& Dent-Glasser, 1971) and $\mathrm{Na}_{2} \mathrm{H}_{2} \mathrm{SiO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Jost \& Hilmer, 1966).

The hydrogen-atom positions and the hydrogenbonding schemes have been determined, in most cases by X-ray diffraction, for the above phases (see references above) except for $\mathrm{Na}_{2} \mathrm{H}_{2} \mathrm{SiO}_{4} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Na}_{2} \mathrm{H}_{2} \mathrm{SiO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O} . \mathrm{Na}_{2} \mathrm{H}_{2} \mathrm{SiO}_{4} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ is of particular interest as it shows unique thermal and physicochemical properties as it is the only member of the $1: 1$ series which undergoes a solid-solid decomposition reaction forming a lower hydrate phase, namely $\mathrm{Na}_{2} \mathrm{H}_{2} \mathrm{SiO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$. A knowledge of the complete structure, including the positions of the hydrogen atoms, should provide a sound basis upon which to explain these properties and which will be published elsewhere.

In this paper we present the results of a singlecrystal neutron diffraction study on deuterated $\mathrm{Na}_{2} \mathrm{H}_{2} \mathrm{SiO}_{4} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ (hereafter $\mathrm{Na}_{2} \mathrm{D}_{2} \mathrm{SiO}_{4} .8 \mathrm{D}_{2} \mathrm{O}$) at 173 K . The results of a 296 K measurement, including thermal-motion analysis and $X-N$ analysis, will be published later.
© 1984 International Union of Crystallography

Table 1. Final atomic parameters for $\mathrm{Na}_{2} \mathrm{D}_{2} \mathrm{SiO}_{4} \cdot 8 \mathrm{D}_{2} \mathrm{O}$ at 173 K

The numbers in parentheses give the e.s.d.'s corresponding to the last significant digit. The equivalent U 's are given as follows: $U_{\mathrm{eq}}=\frac{1}{3}\left(U_{11}+U_{22}+U_{33}\right)$ after diagonalization of the U tensor.

	x	y^{\prime}	z	$U_{\mathrm{eq}}\left(\AA^{2}\right)$
Na	0.1231 (3)	$0 \cdot 1820$ (2)	0.4103 (3)	0.0124 (8)
Si	0.3734 (3)	0.0	0.2500	0.0054 (8)
$\mathrm{O}(1)$	0.2875 (2)	0.0563 (1)	$0 \cdot 1680$ (2)	0.0092 (5)
$\mathrm{O}(2)$	0.4443 (2)	0.0565 (1)	0.3343 (2)	0.0090 (5)
$\mathrm{O}(3)$	$0 \cdot 1202$ (2)	0.0359 (1)	0.4332 (2)	0.0130 (5)
$\mathrm{O}(4)$	$0 \cdot 1079$ (2)	0.1612 (1)	0.2024 (2)	0.0115 (5)
$\mathrm{O}(5)$	0.4144 (2)	0.1780 (1)	0.0575 (2)	0.0142 (5)
O(6)	0.3262 (2)	0.1891 (1)	0.3847 (2)	0.0122 (5)
D(1)	0.2359 (2)	0.0246 (1)	0.1199 (2)	0.0195 (5)
D(31)	0.0998 (2)	0.0389 (1)	0.5161 (2)	0.0213 (5)
D(32)	0.0571 (2)	0.0066 (1)	0.3964 (2)	0.0218 (5)
D(41)	0.0452 (2)	0.1216 (1)	0.1948 (2)	0.0187 (5)
D(42)	0.1775 (2)	0.1293 (1)	0.2011 (2)	0.0211 (5)
D(51)	0.3712 (2)	0.1355 (1)	0.0936 (2)	0.0242 (5)
D(52)	0.4038 (2)	0.1709 (1)	-0.0248 (2)	0.0285 (5)
D(61)	0.3688 (2)	0.1425 (1)	0.3569 (2)	0.0197 (5)
D(62)	0.3572 (2)	0.2345 (1)	0.3449 (2)	0.0231 (5)

Experimental. The single crystals of $\mathrm{Na}_{2} \mathrm{D}_{2} \mathrm{SiO}_{4} \cdot 8 \mathrm{D}_{2} \mathrm{O}$ were synthesized as follows at 293 K . (1) A solution of $6 \cdot 5 \%$ (by weight) $\mathrm{Na}_{2} \mathrm{O}, 6 \cdot 2 \% \mathrm{SiO}_{2}$ and $87.3 \% \mathrm{D}_{2} \mathrm{O}$ was seeded with very small crystallites $(<0.1 \mathrm{~mm}$ in diameter) of the hydrogen compound. (2) When the seeded crystals had a diameter of about 5 mm , they were removed from the solution and then cleaved until about 0.1 mm in diameter. These crystallites were examined under a polarizing microscope and, if still single crystals, they were used as seed crystals for a new solution of the above concentration. (3) Step (2) was then repeated using seed crystals obtained from step (2). The deuteration grade obtained was $\geq 99 \%$ for the crystals yielded from step (3).

The crystal quality was checked by Laue backscattering photography. D_{m} was obtained by the floating method.

Data collection on the D8 four-circle diffractometer at the ILL, Grenoble, crystal $3.0 \times 1.7 \times 2.1 \mathrm{~mm}$: sample cleaved from a bigger crystal consisted of two crystallites misoriented by about 5°. one crystallite (that from which the data were collected) having 20 times the scattering power of the other: superpositions calculated from the orientation matrices: neutron wavelength $1 \cdot 2640 \AA, \mathrm{Cu}(200)$ monochromator: constant temperature of 173 K using an Air Products Displex cryorefrigerator (Allibon. Filhol. Lehmann. Mason \& Simms, 1981). 19 reflections used for calculating lattice parameters: 3 standard reflections. $\pm 1 \%$ intensity variation; 1169 reflections measured up to $(\sin \theta) / \lambda=0.65 \AA^{-1}$. 1062 unique reflections, $R_{\text {int }}=$ $0 \cdot 0074, h 0-14, k 0-21,10-13$; refinement and struc ture solution on the basis of 1015 reflections $\left|F_{0} \geq 3 \sigma\left(F_{o}\right)\right|, 47$ reflections rejected: data reduction carried out with COLL5N (Lehmann \& Wilson, 1982) based on the step-scan data - background algorithm of

Table 2. The hydrogen-bonding s!istem in $\mathrm{Na}_{2} \mathrm{D}_{2} \mathrm{SiO}_{4} \cdot 8 \mathrm{D}_{2} \mathrm{O}$ at 173 K
E.s.d.'s in parentheses correspond to the last significant digit.

Distances (\AA)		Angles (${ }^{\circ}$) $\left\|\mathrm{D}_{2} \mathrm{SiO}_{4}\right\|^{\text {2- }}$ tetrahedron	
$\mathrm{D}(1)-\mathrm{O}(1)$	0.977 (3)		
$\mathrm{D}(1) \cdots \mathrm{O}(3)$	1.799 (3)	$\mathrm{O}(1)-\mathrm{D}(1) \cdots \mathrm{O}(3)$	164.6(2)
$\mathrm{O}(1) \cdots \mathrm{O}(3)$	2.755 (3)		
Water molecules			
$\mathrm{D}(31)-\mathrm{O}(3)$	0.982 (3)	$\mathrm{D}(31)-\mathrm{O}(3)-\mathrm{D}(32)$	105.1 (3)
$\mathrm{D}(32)-\mathrm{O}(3)$	0.983 (3)		
$\mathrm{D}(31) \cdots \mathrm{O}(2)$	1.817 (3)	$\mathrm{O}(3)-\mathrm{D}(31) \cdots \mathrm{O}(2)$	173.0 (2)
$\mathrm{O}(3) \cdots \mathrm{O}(2)$	2.794 (3)		
$\mathrm{D}(32) \cdots \mathrm{O}(2)$	1.838 (3)	$\mathrm{O}(3)-\mathrm{D}(32) \cdots \mathrm{O}(2)^{\prime}$	174.7 (2)
$\mathrm{O}(3) \cdots \mathrm{O}(2)$	$2 \cdot 818$ (3)		
$\mathrm{D}(41)-\mathrm{O}(4)$	0.996 (3)	$\mathrm{D}(41)-\mathrm{O}(4) \mathrm{D}(42)$	103.7(2)
$\mathrm{D}(42)-\mathrm{O}(4)$	0.975 (3)		
$\mathrm{D}(41) \ldots \mathrm{O}(2)$	1.646 (3)	$\mathrm{O}(4)-\mathrm{D}(41) \ldots \mathrm{O}(2)$	$173 \cdot 3$ (2)
$\mathrm{O}(4) \ldots \mathrm{O}(2)$	2.673 (3)		
$\mathrm{D}(42) \ldots \mathrm{O}(1)$	1.821 (3)	$\mathrm{O}(4)-\mathrm{D}(42) \cdots \mathrm{O}(1)$	164.9 (2)
$\mathrm{O}(4) \cdots \mathrm{O}(1)$	2.774 (3)		
D(51)- $\mathrm{O}(5)$	0.970 (3)	$\mathrm{D}(51)-\mathrm{O}(5) \mathrm{D}(52)$	105.1(3)
$\mathrm{D}(52)-\mathrm{O}(5)$	0.960 (3)		
$\mathrm{D}(51) \cdots \mathrm{O}(1)$	1.865 (3)	$\mathrm{O}(5)-\mathrm{D}(51) \cdots \mathrm{O}(1)$	177.8 (3)
$\mathrm{O}(5) \cdots \mathrm{O}(1)$	2.836 (3)		
$\mathrm{D}(52) \cdots \mathrm{O}(4)$	2.049 (3)	$\mathrm{O}(5) \cdots \mathrm{D}(52) \cdots \mathrm{O}(4)$	175.6 (3)
$\mathrm{O}(5) \ldots \mathrm{O}(4)$	3.008 (3)		
D(61). $\mathrm{O}(6)$	0.986 (3)	$\mathrm{D}(61)-\mathrm{O}(6) \mathrm{D}(62)$	107.2 (3)
D(62)-O(6)	0.963 (3)		
$\mathrm{D}(61) \cdots \mathrm{O}(2)$	1.721 (3)	$\mathrm{O}(6)-\mathrm{D}(61) \ldots \mathrm{O}(2)$	169.7 (3)
$\mathrm{O}(6) \ldots \mathrm{O}(2)$	2.696 (3)		
$\mathrm{D}(62) \cdots \mathrm{O}(4)$	1.891 (3)	$\mathrm{O}(6)-\mathrm{D}(62) \cdots \mathrm{O}(4)$	163.9 (3)
$\mathrm{O}(6) \cdots \mathrm{O}(4)$	2.830 (3)		

Lehmann \& Larsen (1974): no correction for absorption, $\mu(n)_{\text {catc }}=0.001 \mathrm{~mm}^{-1}$: structure analysis and refinement on F with SHELX (Sheldrick. 1976), TR 440 computer, $\mathfrak{w}^{-1}=\sigma^{2}\left(F_{o}\right)=\sigma_{c}^{2}\left(F_{0}\right)+\left(k F_{o}\right)^{2}, \sigma$ from Poisson counting statistics, $k=0.02$: scattering lengths for $\mathrm{Si}, \mathrm{Na}, \mathrm{O}$ and D from the compilation of Koester \& Rauch (1981): deuterium-atom positions obtained by Fourier and Patterson methods using the heavy-atom coordinates given by Jamieson \& Dent-Glasser (1966b): all parameters refined by full-matrix least squares with free site-occupation factors in the initial stage of the refinement but with fixed ones in the final iso- and anisotropic runs: isotropic refinement gave $R=0.055$: in final anisotropic refinement $R=0.037$ and $R_{\mathrm{w}}=0.046$ with 151 parameters refined: $\Delta_{\max } /$ $\sigma=-0.001$ in the last cycle.

Discussion. The atomic parameters are listed in Table 1. the bond lengths and angles of the hydrogen bonds are listed in Table 2.*

[^0]The crystal structure of $\mathrm{Na}_{2} \mathrm{D}_{2} \mathrm{SiO}_{4} \cdot 8 \mathrm{D}_{2} \mathrm{O}$ consists of isolated $\left[\mathrm{D}_{2} \mathrm{SiO}_{4}\right]^{2-}$ anions and chains of $\left[\mathrm{Na}\left(\mathrm{D}_{2} \mathrm{O}\right)_{6}\right]^{+}$ cations which are edge-linked running parallel to the a axis (Jamieson \& Dent-Glasser, 1966b).* These features are clearly visible in the diagram of the unit cell presented in Fig. 1. Fig. 2 shows the local geometry for the $\left[\mathrm{D}_{2} \mathrm{SiO}_{4}\right]^{2-}$ tetrahedron, including bond lengths and angles and its twofold symmetry.

Hydrogen bonding, which is mostly concentrated around the $\left[\mathrm{D}_{2} \mathrm{SiO}_{4}\right]^{2-}$ tetrahedron, plays an important role in this compound.* This shows up in Table 2 which gives the corresponding interatomic distances and angles. Table 2 and Fig. 1 indicate how the $\left[\mathrm{D}_{2} \mathrm{SiO}_{4}\right]^{2-}$ tetrahedra link the chains of the $\mathrm{Na}-\mathrm{D}_{2} \mathrm{O}$ octahedra to

Fig. 1. The unit cell of $\mathrm{Na}_{2} \mathrm{D}_{2} \mathrm{SiO}_{4} \cdot 8 \mathrm{D}_{2} \mathrm{O}$ (ORTEP; Johnson, 1965). The figure shows the $\left|\mathrm{D}_{2} \mathrm{SiO}_{4}\right|^{2-}$ anions and the sheets of edge-linked and almost regular $\left|\mathrm{Na}\left(\mathrm{D}_{2} \mathrm{O}\right)_{6}\right|^{+}$cations. The deuterium atoms are omitted for clarity. $\theta=\mathrm{Na} \Theta=\mathrm{Si} \mathrm{O}=\mathrm{O}$ $\odot=O D$ group $\left|\mathrm{D}_{2} \mathrm{SiO}_{4}\right|^{2-}$ tetrahedron.

Fig. 2. The slightly distorted $\left|\mathrm{D}_{2} \mathrm{SiO}_{4}\right|^{2-}$ tetrahedron showing its twofold symmetry and the thermal ellipsoids of $\mathrm{Si}, \mathrm{O}(1), \mathrm{O}(2)$ and $D(1)$. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses.
give a sheet-like character to the structure (Fig. 1) which shows up in a preferred cleavability perpendicular to the b axis of the crystal.

All hydrogen bonds show normal behaviour, i.e. the longer and therefore the weaker the $\mathrm{O} \cdots \mathrm{O}$ contacts become, the shorter the $\mathrm{O}-\mathrm{D}$ bonds become, a fact which can be observed in the $\mathrm{O}(5) \cdots \mathrm{O}(4)$ hydrogen bond of $3.008(3) \AA$ and an $O(5)-D(52)$ bond of 0.960 (3) \AA which is significantly shorter than the $\mathrm{O}(4)-\mathrm{D}(41)$ bond of 0.996 (3) \AA in the shorter $\mathrm{O}(4) \cdots \mathrm{O}(2)$ bond of 2.673 (3) \AA. These data are listed in Table 2 and fit well to the bond length - bond strength correlation curves of Brown \& Shannon (1973) and Donnay \& Donnay (1973). This normal behaviour is also indicated by the corresponding angles, and especially the $\mathrm{O}-\mathrm{D} \cdots \mathrm{O}$ angles which range between 150 and 180°, which is normal for $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angles in most hydrogen-bonded crystal structures, i.e. when the hydrogen bond in question is not bifurcated (Baur, 1965). That the $\mathrm{D}_{2} \mathrm{O}$ molecule itself is only slightly distorted, too, shows up in the $\mathrm{D}-\mathrm{O}-\mathrm{D}$ angles which range between 103 and 108°. The interatomic distances and angles in the hydrogen-bonding system of $\mathrm{Na}_{2} \mathrm{D}_{2} \mathrm{SiO}_{4} \cdot 8 \mathrm{D}_{2} \mathrm{O}$ are listed in Table 2.

The structure of $\mathrm{Na}_{2} \mathrm{D}_{2} \mathrm{SiO}_{4} \cdot 8 \mathrm{D}_{2} \mathrm{O}$ is very loosely packed. This not only shows up in the $\mathrm{Na}-\mathrm{O}$ polyhedra, which have coordination number 6 and are similar to those observed in the alums, but also in the $\mathrm{D}_{2} \mathrm{O}$ surroundings which have low coordination numbers of 4 with the exception of $\mathrm{O}(4)(\mathrm{CN}=5)$. In related structures the $\mathrm{D}_{2} \mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)$ coordination numbers are often 5, especially in the hydrate series $\mathrm{Na}_{3} \mathrm{HSiO}_{4} \cdot n \mathrm{H}_{2} \mathrm{O}$ (Smolin et al., 1973; Schmid et al., 1979, 1981). The coordination types are class $2 G$ $[O(3)]$, class $3 P[O(4)]$ and class $2 A[O(5)$ and $O(6)]$ according to Ferraris \& Franchini-Angela (1972). O(5) and $\mathrm{O}(6)$ belong to the bridging $\mathrm{D}_{2} \mathrm{O}$ molecules which link the $\mathrm{Na}-\mathrm{O}$ octahedra at the edges. The above classification means that $O(3), O(5)$ and $O(6)$ are tetrahedrally coordinated with extra D and Na atoms along the oxygen lone pairs, whereas $\mathrm{O}(4)$ shows a trigonal bipyramidal coordination polyhedron with one extra D atom in the $\mathrm{D}-\mathrm{O}-\mathrm{D}$ plane and one D and one Na perpendicular to this plane.

References

Allibon, J. R., Filhol, A., Lehmann, M. S., Mason, S. A. \& Simms, P. (1981). J. Appl. Cryst. 14, 326-328.
Baur, W. H. (1965). Acta Cryst. 19, 909-916.
Brown, I. D. \& Shannon, R. D. (1973). Acta Cryst. A29, 266-282.
Dent-Glasser, L. S. \& Jamieson, P. B. (1976). Acta Cryst. B32, 705-710.
Donnay, G. \& Donnay, J. D. H. (1973). Acta Cryst. B29, 1417-1425.
Ferraris, G. \& Franchini-Angela, M. (1972). Acta Cryst. B28, 3572-3583.

Jamieson, P. B. \& Dent-Glasser, L. S. (1966a). Acta Cry'st. 20, 373-376.
Jamieson, P. B. \& Dent-Glasser, L. S. (1966b). Acta Cry'st. 20. 688-693.
Jamieson, P. B. \& Dent-Glasser, L. S. (1967). Acta Cryst. 22, 507-522.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Jost, K. H. \& Hilmer, W. (1966). Acta Cryst. 21, 583-589.
Koester, L. \& Rauch, H. (1981). Summary of Neutron Scattering Lengths. IAEA contract 2517/RB.
Lehmann, M. S. \& Larsen, F. K. (1974). Acta Cryst. A 30. 580-584.

Lehmann, M. S. \& Wilson, S. (1982). College V Data Reduction System: Treatment of Reflection Profiles. ILL Tech. Rep. 74 LIIIT. Institut Laue-Langevin, Grenoble, France.
Schmid, R., Huttner, G. \& Felsche. J. (1979). Acta Crist. B35. 3024-3027.
Schmid. R. L., Szolnay, L., Felsche. J. \& Huttner. G. (1981). Acta Cry'st. B37, 789-792.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge. England.
Smolin, Yu. I.. Shepelev, Yu. F. \& Butikova. I. K. (1973). Sor. Phys. Crystallogr. 18. 173-176.
Williams. P. P. \& Dent-Glasser. L. S. (1971). Acta Crist. B27. 2269-2275.

Acta Cryst. (1984). C40, 736-738

Structure of Calcium Thymidine 5^{\prime}-Phosphate Dihydrate, $\mathrm{Ca}^{2+} . \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{\mathbf{8}} \mathrm{P}^{\mathbf{2 -}} . \mathbf{2 H} \mathbf{2} \mathbf{O}$

By Tomohiro Sato
Shionogi Research Laboratories, Shionogi \& Co. Ltd, Fukushima-ku, Osaka 553. Japan

(Received 13 October 1983: accepted 11 November 1983)

Abstract

M_{r}=396.3\), monoclinic, $P 2_{1}, a=12.821$ (5), $b=11.050$ (2), $c=5.543$ (1) $\AA, \beta=98.95$ (3) ${ }^{\circ}, V=$ 775.7 (4) $\AA^{3}, Z=2, D_{x}=1.697 \mathrm{Mg} \mathrm{m}^{-3}$, Мо $K \alpha, \lambda$ $=0.7107 \AA, \quad \mu=0.56 \mathrm{~mm}^{-1}, \quad F(000)=412, \quad T=$ 298 K , final $R=0.030$ for 2146 observed reflections. The molecule has a $\mathrm{C}\left(4^{\prime}\right)$-exo (E_{4}) sugar associated with an anti glycosidic bond rotation Itorsion angle $\left.\mathrm{O}\left(4^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{N}(1)-\mathrm{C}(6)=65.7(4)^{\circ}\right]$. The conformations about the $\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$ and $\mathrm{C}\left(5^{\prime}\right)-\mathrm{O}\left(5^{\prime}\right)$ bonds are trans-gauche [torsion angle $\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-$ $\mathrm{O}\left(5^{\prime}\right)=-60.4(3)^{\circ}$] and trans [torsion angle $\mathrm{C}\left(4^{\prime}\right)-$ $\mathrm{C}\left(5^{\prime}\right)-\mathrm{O}\left(5^{\prime}\right)-\mathrm{P}=-153.5(2)^{\circ} \mathrm{I}$, respectively. All available H atoms participate in hydrogen bonding.

Introduction. The crystal structure of calcium thymidine 5 '-phosphate hexahydrate has been reported (Trueblood, Horn \& Luzzati, 1961). We have found another crystalline form of calcium thymidine 5^{\prime} phosphate and subjected it to X-ray analysis. This study is part of a series of crystallographic investigations of nucleic acid constituents.

Experimental. Crystals grown from water/2-methyl2,4 -pentanediol solution by vapor diffusion, colorless plates, crystal $0.04 \times 0.20 \times 0.40 \mathrm{~mm}$ used for data collection, Rigaku AFC-5 diffractometer, graphitemonochromator; lattice parameters refined by leastsquares method (22 reflections, $29<2 \theta<40^{\circ}$); intensities measured up to $2 \theta=60^{\circ}\left(\sin \theta / \lambda \leq 0.704 \AA^{-1}\right), \omega$ scan $\left(2 \theta \leq 30^{\circ}\right), \omega-2 \theta$ scan $\left(2 \theta>30^{\circ}\right), 3$ standard reflections, no variation, 2363 independent reflections, h $0-15, k 0-12, l=-6-6$, no absorption correction; structure solved by MULTAN (Main, Hull, Lessinger.

Germain, Declercq \& Woolfson, 1978), Ca and the phosphate group located from E map, the other non- H atoms from weighted Fourier, H atoms from difference Fourier; structure refined by block-diagonal leastsquares method, anisotropic temperature factors for non- H atoms, isotropic temperature factors for H atoms, $\sum w \Delta^{2}$ minimized, $\Delta=\left|F_{\theta}\right|-\left|F_{c}\right|, n=1 / \sigma^{2}\left(F_{\theta}\right)$ for $\quad\left|F_{c}\right| \geq 3 \sigma\left(F_{t}\right), \quad w=0 \quad$ for $\quad\left|F_{c}\right|<3 \sigma\left(F_{\theta}\right) \quad$ or $|\Delta| \geq 3 \sigma\left(F_{o}\right), \quad \sigma\left(F_{o}\right)=\left.\left.\left|\sigma_{1}^{2}\left(F_{o}\right)+0.00020\right| F_{o}\right|^{2}\right|^{1 / 2}$. $\sigma_{1}\left(F_{o}\right)$ is e.s.d. based on counting errors (Grant. Killean \& Lawrence, 1969),* $R=0.030$ for 2146 reflections $(n \neq 0), R_{w}=0.033, S=1.05$; atomic scattering factors from International Tables for X-ray Crystallography (1974).

Discussion. Refined atomic coordinates are given in Table 1. A perspective view of the molecule is shown in Fig. 1. Bond distances and angles are listed in Table 2.

The deoxyribose ring adopts a $C\left(4^{\prime}\right)$-exo puckering. The pseudorotation coordinates of the five-membered ring (Sato, 1983) are $\Pi=36.8$ (3), $\Phi=151.5$ (5) ${ }^{\circ}$. A pucker quite similar to this has been observed in 5-acetyl-2'-deoxyuridine (Barr, Chananont, Hamor, Jones, O'Leary \& Walker, 1980), but C(4')-exo puckers are rather exceptional in the crystal structures of nucleosides and nucleotides so far observed. The sugar is associated with an anti base. The glycosidic torsion

0108-2701/84/050736-03\$01.50

[^1] © 1984 International Union of Crystallography

[^0]: * Lists of structure factors. anisotropic thermal parameters. angles and distances of the $\mathrm{D}_{2} \mathrm{O}$ polyhedra and figures of the $\mathrm{Na}-\mathrm{D}, \mathrm{O}$ polyhedra and the hydrogen bonding around the $\left|\mathrm{D}, \mathrm{SiO}_{4}\right|^{2}$ tetrahedron have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39084 (23 pp .). Copies may be obtained through The Executive Secretary. International Union of Crystallography. 5 Abbey Square. Chester CHI 2 HU . England.

[^1]: * Lists of structure factors. anisotropic temperature factors and H -atom coordinates have been deposited with the British Library H -atom coordinates have been deposited with the British Library
 Lending Division as Supplementary Publication No. SUP 39024 (19 pp .). Copies may be obtained through The Executive Secretary. International Union of Crystallography. 5 Abbey Square. Chester CHI 2HU. England.

